LAC SUT REPORT: STANDARD AND ALTERNATIVE NETWORK SOLUTIONS

Ján Hefty, Miroslava Igondová, Ľubomíra Gerhátová, Marián Kováč Department of Theoretical Geodesy Slovak University of Technology, Bratislava, Slovakia e-mail: hefty@cvt.stuba.sk

> EUREF Permanent GPS Network 4th Local Analysis Centres Workshop September 18-19, 2003, Graz, Austria

Introduction

- LAC SUT: Department of Theoretical Geodesy, Faculty of Civil Engineering, Slovak University of Technology in Bratislava (SUT)
- Main research activities of the department: local and regional geodynamics, geodetic GPS applications, geoid determination, geographical information systems
- Participation of SUT in EPN: Operation of GPS permanent station Modra-Piesok (MOPI) since 1996, EPN LAC from September 2002

LAC SUT : main features

- First weekly solution included into EPN combination: week 1182
- Analysed network in September 2002: 25 stations distributed over the whole European continent, status in September 2003: 32 stations
- Main purpose of the network geometry: regular station distribution all over the continent enabling geodynamics monitoring and investigations
- Analysing tools: BERNESE GPS software, version 4.2, Linux operating system, BPE + own scripts
- Standard processing following the guidelines for EPN analysis centres: daily solutions, weekly combination, troposphere zenith delays with weekly coordinates fixed.

EPN subnetwork processed at SUT Bratislava (status Jan. 2003)

Basic information from one-year network processing at LAC SUT

- Baselines are in range from 40 to 1550 km, average baseline is 500 km. All the baselines are solved without significant problems
- Reference site ZIMM: very stable without any interruptions and without local variations or jumps up to week 1230.
 Reference site from 1231: BOR1
- Problematic sites with frequent interruptions or breaking of observations: SBGZ, HFLK, SVTL, ORID, DUBR, BRST, REYK, QAQ1
- Sites with larger scatter and specific behaviour: QAQ1, REYK, CAME, DUBR, ORID, MIKL, MOPI

Additional and alternative solutions at LAC SUT

- Network processing in 4-hour separate intervals -"sub-daily" resolution: only coordinate estimations, ambiguities and troposphere zenith delays taken from 24-hour solutions.
- Ionosphere models from 24 h intervals, coordinates and troposphere fixed from weekly and daily solutions.
- Estimation of station troposphere gradients simultaneously with troposphere zenith delays, coordinates are fixed from weekly solutions.

Time series from sub-daily network solutions in 4-hour observing intervals

- Main goals: daily coordinate variations, detailed investigation of jumps in the coordinate time series, tidal phenomena in station positions.
- Two approaches are applied:
 - Spectral analysis of individual station series (*n*, *e*, and *up* components), problems with observation gaps and series discontinuities.
 - Least squares estimates of amplitudes and phases of harmonics with known frequencies.
- Data processing: high-frequency filtration, jumps identification and exclusion, outliers detection, interpolation of sub-daily coordinates, spectral analysis and LS estimates for dominating terms.

Example of variations in the band 0.4 - 1.2 day Station BRST - *n* component

- data from 0.5 year series
- ocean loading effects included in processing
- all the effects are relative to reference point ZIMM

Example of variations in the band 0.4 - 1.2 day Station BRST - e and up components

Direction E-W

Amplitudes of horizontal components variations with period M2 (the ocean loading effect was included in network processing)

Amplitudes of horizontal components variations with period O1 (the ocean loading effect was included in network processing)

Amplitudes of horizontal components variations with period K2 (Probably residual effect of GPS orbit modelling. Orbiting period of GPS satellite = period of K2)

Conclusions from analysis of sub-daily station coordinate variations

- In all the analysed series dominate in the high frequency spectra the terms with diurnal and semidiurnal frequencies.
- All the significant terms could be associated with main tidal frequencies M2, K2, S2, O1, P1, K1, S1
- The applied processing strategies allow for identification of periodic variations at sub-millimetre level.
- The observed amplitudes of horizontal n and e components are in general at the same level (or larger) than of the up component

Conclusions from analysis of sub-daily station coordinate variations (cont.)

- Observed M2 and O1 waves could be associated with deficiencies in solid Earth, and mainly of ocean loading tidal modelling
- The K2 and K1 residual effects in the series are probably associated with modelling of GPS satellite orbits
- variations with S2 and S1 frequencies reflect mainly the thermal and atmospheric effects at the observing sites

Further development: complex effective model for least squares estimates from whole network solutions

$$\begin{bmatrix} \mathbf{N}_{1} \\ \mathbf{N}_{2} \\ \vdots \\ \mathbf{N}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{T}_{1} & \mathbf{H}_{1} & \mathbf{S}_{1} \\ \mathbf{I} & \mathbf{T}_{2} & \mathbf{H}_{2} & \mathbf{S}_{2} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{I} & \mathbf{T}_{n} & \mathbf{H}_{n} & \mathbf{S}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \\ \mathbf{a} \\ \mathbf{w} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_{1} \\ \boldsymbol{\varepsilon}_{2} \\ \vdots \\ \boldsymbol{\varepsilon}_{n} \end{bmatrix}$$

$$i = 1, 2..., n$$

- *n* number of analysed solutions $\approx 10^4$
- N_i coordinates from network solution in epoch t_i (results from sub-daily processing)

 $\mathbf{T}_i = \operatorname{diag}(t_i - t_0)$

- $\mathbf{H}_i \qquad \text{matrix of coefficients of harmonic terms seasonal and tidal diag(\mathbf{h})} \\ \mathbf{h} = \{ \sin \left[\pi (t_i t_0) / P_j \right], \cos \left[4 \pi (t_i t_0) / P_j \right] \dots \}$
- S_i matrix of coefficients defining biases, pulses and jumps with known time resolution

Parameters:

- **x** coordinates in epoch t_0
- v velocities
- **a** amplitudes of seasonal and tidal periodic variations
- w sudden coordinate changes

Covariance matrix of estimated coordinates N

$$\Sigma_{N} = \begin{bmatrix} \Sigma_{N1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \Sigma_{N2} & & \mathbf{0} \\ \vdots & & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \Sigma_{Nn} \end{bmatrix}$$

The model enables statistically rigorous estimates of periodic phenomena taking the covariance matrices of observed coordinates into account

Global daily ionosphere models

- Latitude band covered: from 30 to 75 degrees
- Spherical harmonics representations with degree and order 5 (36 terms).
- Applications:
- processing of data from single frequency GPS receivers,
- precise short baseline determination for special purposes separately on L1 and L2,
- utilisation of GPS based ionosphere models in various fields of geophysics.

Estimation of troposphere gradients (azimuthal asymmetry in tropospheric delay)

Tropospheric zenith delay:

$$\Delta \rho(t) = \Delta \rho_{a priori} f(z) + \Delta \rho_h(t) f(z) + \Delta \rho(t)_n \frac{\partial f}{\partial z} \cos(A) + \Delta \rho(t)_e \frac{\partial f}{\partial z} \sin(A)$$

- f(z) mapping function
- $\Delta \rho_h$ zenith delay parameter
- $\Delta \rho_n$ gradient parameter in north-south direction
- $\Delta \rho_e$ gradient parameter in east-west direction
- Troposphere gradients are estimated for 24 and 6 hour intervals
- RMS of $\Delta \rho$ estimates are usually less than 0.3 mm

Example of troposphere gradient time series: station BOR1, 24-hour intervals

Example of troposphere gradient time series: station DUBR, 24-hour intervals

Example of troposphere gradient time series: station ZIMM, 6-hour intervals

Conclusions to troposphere gradients

- The majority of estimated troposphere gradients exceed the one-sigma interval.
- The typical amplitudes of 24-hour gradients are about 0.5 mm, individual values reach about 2 mm.
- Some stations (DUBR, ORID) show one order larger troposphere gradients.
- A significant diurnal variation is observed in 6-hour gradients estimates .
- Open question: are the observed gradients at some stations real mapping of troposphere behaviour or an artefact of processing and estimation procedure?

